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Abstract
Colorectal cancer (CRC) is one of the most frequent cancers in both men and women with an increasing incidence in 
young adults. Despite the expansion of our understanding regarding the biology and pathogenesis, the advances in 
the treatment of metastatic CRC disease remain limited. Over the past years, a growing number of molecular targets 
have attracted the interest of the scientific community. Until now, clinical utility has been confirmed for a numerous 
of these actionable targets. So, new treatment approaches have focused on angiogenesis and immunotherapy as 
well as novel inhibitors have been developed against EGFR (Epidermal Growth Factor Receptor), KRAS (KRAS Proto-
Oncogene, GTPase), BRAF (B-Raf Proto-Oncogene, Serine/Threonine Kinase), HER2 (Erb-B2 Receptor Tyrosine Kinase 
2), ΝΤRΚ (Neurotrophic Receptor Tyrosine Kinase) and others. In this review, we summarize current knowledge on 
the validated as well as emerging molecular targets in the treatment of metastatic CRC.
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by the end of 2021 in the United States [2]. 
The incidence of this cancer type has been increas-

ing accordingly to the human development index with 
the European countries, Australia and Northern America 
ranking first in the list. This phenomenon has been related 
to western-type dietary patterns and lifestyle factors, 
such as smoking and excess meat consumption [3]. But 
despite the fact that the survival rate has been improv-
ing through the years, especially due to the widely used 
screening methods, changes in certain daily habits but 
also the evolution of therapeutic strategies, the overall 
5-year survival rate, which mainly depends on the stage of 
the disease, remains at 65-70% in localized and regional 
stage cancers but drops significantly below 20% for those 
whose cancer has spread to distant parts of the body (14% 
for colon cancer and 16% for rectal cancer according to 
the American Cancer Society’s (ACS) data from 2010-2016.

INTRODUCTION
Colorectal cancer (CRC) appears to be the third 

most commonly diagnosed cancer and one of the pre-
dominant causes of cancer-related mortality worldwide, 
ranking second following lung malignancies. Accord-
ing to the 2020 GLOBOCAN statistics, there have been 
recorded approximately more than 1.9 million new 
cases of colorectal cancer (9.8 % of all cancer cases) 
along with 935,000 deaths (9,2% of total cancer related 
deaths.), affecting both men and women [1]. Similarly, 
the American Cancer Society expects 104,270 new cases 
of colon cancer and 45,230 new cases of rectal cancer, 
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Until now, the cornerstone in the treatment of early-
stage CRC is the surgical resection of the tumor. However, 
surgery is rarely a curative option for almost 20-25% of 
patients that present initially with metastatic cancer 
or develop later metastatic disease. In these cases, 
radiotherapy, chemotherapy and most recently im-
munotherapy are implemented as treatment options. 

The heterogeneity of CRC, regarding especially the 
distinct molecular profile that each tumor has, and 
therefore its unique clinical features, has generated 
the necessity to seek alternative treatments. Focusing 
on molecular targets, these therapeutic strategies are 
mainly associated with predictive biomarkers, such as 
microsatellite instability (MSI), mutations in RAS (RAS 
Proto-Oncogene, GTPase) and BRAF (B-Raf Proto-On-
cogene, Serine/Threonine Kinase) genes, amplification 
of HER2 (Erb-B2 Receptor Tyrosine Kinase 2) as well as 
NTRK (Neurotrophic Receptor Tyrosine Kinase) gene 
fusions and aim to achieve a prolonged survival rate 
for patients with CRC with significantly less side effects 
than chemotherapy [4]. An alternative modern treat-
ment option of metastatic CRC is the administration of 
immunotherapy and especially the immune checkpoint 
inhibitors which aim to reactivate the immune system 
response against cancer [5]. In this review, we present 
current knowledge regarding the molecular targets in 
the treatment of CRC. 

Significant signaling pathways in colorectal cancer
The signaling pathway of the EGFR (epidermal 

growth factor receptor) has a central role in CRC. The 
activation of EGFR triggers the activation of PI3K (Phos-
phoinositide-3-kinase) and MAPK (Mitogen-Activated 
Protein Kinase) signaling pathways, which constitute 
significant pathways for cell proliferation, growth and 
apoptosis inhibition [6,7]. EGFR is present on the cell 
membranes, while elevated expression levels can be 
found in neoplastic cells and moderate adenomas [8]. 
Studies have shown that 60-80% of colorectal tumors 
have overexpressed EGFR [9]. 

More specifically, EGFR, a member of the ErbB fam-
ily of receptor tyrosine kinase, is a transmembrane 
glycoprotein with an intracellular domain functioning 
as a tyrosine kinase and an extracellular ligand-binding 
domain [10]. The ErbB family consists of four ErbB mem-
bers: ErbB1 (EGFR/HER1), ErbB2 (Neu/HER2), ErbB3 
(HER3), and ErbB4 (HER4) [11]. After the ligand binding 
on the receptor, homo- or hetero-dimerization occurs, 
phosphorylation of the tyrosine kinase domains is trig-

gered, and the MAPK cascade is activated [10]. Then, 
the next step of the signaling cascade is the activation 
of RAS protein. There are three isoforms of Ras GTPases 
(Guanosine triphosphate) including H-Ras, N-Ras, and 
K-Ras [12,13].

The RAS protein has two forms, the active GTP bound 
state, and the GDP (Guanosine diphosphate) bound state 
[14]. RAF activation by phosphorylation is mediated by 
active RAS leading to MEK/MAPK (Mitogen-activated 
protein kinase) activation as well as to phosphoryla-
tion and activation of ERK (extracellular signal-related 
kinase) [15–17]. Phosphorylated ERK translocates from 
the cytoplasm to the nucleus, as a transcription factor, 
phosphorylates and regulates various other transcription 
factors, including carbamoyl phosphate synthetase II 
(CPS-II) and p90RSK. The final result is the expression of 
target genes (e.g. c-FOS, c-JUN and myc) by the transcrip-
tion factors, leading to cell survival and growth [18,19].

Role of angiogenesis in colorectal cancer
Angiogenesis is the process through which new vas-

cular networks originate and branch from pre-existing 
vessels. It takes place mainly during early embryo-
genesis, while in adults blood vessels rarely form new 
brunches, except in tissue repair or disease conditions, 
including cancer progression. It involves the migration 
of endothelial cells at the lead of growing vessels, lumen 
formation and the maturation of newly formed blood 
vessels through the recruitment of mural cells and the 
consolidation of cell to cell adhesion [20]. The rapid 
development of new vascular networks is necessary to 
support the progression of cancer and therefore sustain 
neoplastic growth, while these events also facilitate the 
dissemination of metastases [21]. The most important 
angiogenic regulators are the vascular endothelial 
growth factor (VEGF) and its receptors, which are over-
expressed in metastatic CRC [22]. Other mediators of 
angiogenesis include platelet-derived growth factor 
(PDGF) and fibroblast growth factor (FGF) [23].

The VEGF family consists of five secreted glycopro-
teins (termed VEGF-A to -E) and the placenta growth 
factor (PIGF)-1 and -2, which bind, with different affinity 
and specificity, to three receptor tyrosine kinases (RTKs) 
on endothelial cells (termed VEGFR-1 to -3) [24,25]. 
VEGF promotes angiogenesis in several ways, which 
are mediated by intracellular signaling events initiated 
by the binding and dimerization of cognate receptors 
on endothelial cells. It has been shown that VEGF can 
induce vascular permeability through ERK1/2 (Extracel-
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cancer types, angiogenesis is not a determinant of cancer 
progression, anti-angiogenic treatment options show 
significant clinical activity [49]. Besides the reduction 
of tumor growth and inhibition of metastasis, they can 
also normalize vascular permeability and facilitate the 
delivery of chemotherapeutic agents, resulting in more 
effective cancer treatment [50].

The overall clinical benefit has been well established, 
even if it is slight. The two categories of medicines that 
target angiogenesis include monoclonal antibodies 
(mAbs) and tiny chemicals, such as tyrosine kinase 
inhibitors (TKIs) [51]. The mAbs act by either directly 
binding to VEGF-A or blocking the appropriate recep-
tor’s extracellular binding domain. Three mAbs are 
used in clinical practice: bevacizumab, aflibercept, and 
ramucirumab. Bevacizumab is a humanized IgG mono-
clonal antibody that binds to all isoforms of VEGF-A. 
Aflibercept is a soluble decoy receptor that binds to 
VEGF and stops it from activating its native receptors. 
Ramucirumab binds with a high affinity to the VEGFR-2 
extracellular domain, preventing VEGF ligands from 
binding and thereby blocking receptor activation. TKIs 
work by binding to and inhibiting the kinase domains 
of a variety of receptors involved in the angiogenesis 
process [51,52].

Angiogenesis can be targeted for the management 
of mCRC in any line of treatment. Bevacizumab has been 
combined with chemotherapy in both first and second 
line of treatment, while aflibercept and ramucirumab 
have been approved for second-line treatment. In ad-
dition, regorafenib (TKI) is used as monotherapy in 
patients with chemo-resistant illness [53,54].

Bevacizumab is the most widely used anti-angio-
genic inhibitor. Since monotherapy has a minor effect, 
it is frequently used with chemotherapy to improve 
efficacy as evaluated by the response rate (RR), progres-
sion-free survival (PFS), and overall survival (OS). It has 
been shown that when paired with chemotherapy, it 
outperforms the chemotherapy plus placebo [55–60]. 
Bevacizumab is used in conjunction with modern com-
bination therapies. It appears to be more effective with 
the triplet FOLFOXIRI (folinic acid, 5-fluorouracil, oxali-
platin and irinotecan) than with FOLFIRI (folinic acid, 
5-fluorouracil and irinotecan) alone [61]. After first-line 
treatment, bevacizumab is also effective when paired 
with chemotherapy [62–64]. Unfortunately, there are 
no clinically validated biomarkers for predicting beva-
cizumab benefit. In addition, bevacizumab can cause 
vascular adverse effects, the most dangerous of which 

lular Signal-Regulated Kinase 1/2) and AKT signaling 
pathways, thus creating a pro-angiogenic environment 
[26]. Moreover, VEGF leads to upregulation of the anti-
apoptotic BCL2 protein through the PI3K/AKT pathway 
and confers a survival signal to endothelial cells, while 
induces the secretion of key enzymes, such as metal-
loproteinases and other proteases, necessary for the 
migration and invasion of endothelial cells [27–29]. 

Upregulation and secretion of VEGF in the tumor 
microenvironment are mostly driven by hypoxia, which 
is the result of insufficient vascular supply inside the 
growing tumor. The hypoxia-inducible factors (HIFs) are 
upregulated during hypoxic conditions leading to the 
transactivation of angiogenesis-related genes (VEGF, 
PDGF-B) and cell proliferation (TGF-β) [30]. Besides 
hypoxia, HIF proteins are also upregulated through 
specific oncogenic signaling effectors, including ERK 
and PKA [31,32]. The production of VEGF can also be 
directly promoted by the activation of oncogenes, 
including KRAS, HER2, EGFR or members of the MAPK 
cascade, all of which can be found mutated in CRC 
[33–36]. Finally, VEGF expression can be mediated by 
several growth factors and cytokines, such as PDGF, IGF 
and prostaglandins [37–39].

Tumor vascular networks demonstrate high degrees 
of heterogeneity and atypical morphological features 
compared to normal vasculature. They are characterized 
by excessive permeability, poor perfusion and disorgan-
ized vascular pressure due to vascular immaturity and 
mechanical forces applied on the vessels by the grow-
ing tumor [40,41]. These events result in hypoxic areas 
that drive cancer cells to acquire a more aggressive 
phenotype [42]. In addition, numerous studies have 
documented the role of angiogenesis in colon cancer 
progression and metastasis, since it provides a conduit 
for cancer cell dissemination [43]. In this vein, not only 
the VEGFR-VEGF axis, but also other mechanisms, such 
as Notch signaling activation and E-selectin expression, 
are recruited [44,45]. Moreover, this heterogeneity has 
a direct impact on the efficacy of the available treat-
ment options. Cells under hypoxic conditions are less 
sensitive to radiation, while insufficient blood supply 
of specific areas inside the tumor limits the delivery of 
chemotherapeutic agents and host immune cells trig-
gered by immunotherapies to target cancer cells [46–48].

Targeting angiogenesis in colorectal cancer 
Targeting angiogenesis is a major approach in cancer 

treatment. Although in metastatic CRC and most other 
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are gastrointestinal perforation, bleeding, and arterial 
thrombosis (<1% of patients). Furthermore, proteinuria, 
hypertension, and leukopenia are also common side 
effects [65,66]. 

In addition, ramucirumab is an approved medication 
for the second-line treatment of mCRC. In comparison 
to FOLFIRI alone, the combination of ramucirumab with 
FOLFIRI increased PFS and OS but not response rate [67]. 
On the other hand, in a phase II trial, it was discovered 
that adding ramucirumab to the FOLFOX (fluorouracil-
leucovorin-oxaliplatin) regimen did not improve PFS 
[68]. Furthermore, aflibercept binds to VEGF-A more 
effectively than bevacizumab [69]. When combined with 
FOLFIRI, aflibercept improves survival in patients who 
had previously progressed on an oxaliplatin-containing 
therapy [70]. In the first-line scenario, however, the com-
bination of aflibercept and FOLFOX did not produce any 
apparent improvement. As a result, aflibercept is used 
as a second-line CRC treatment [71].

Anti-angiogenic TKIs have also been evaluated in 
people with mCRC. Regorafenib is the only TKI that is 
used in the clinical practice of mCRC. CORRECT trial 
confirmed a survival benefit for regorafenib as mono-
therapy (median OS 6.4 months) compared to placebo 
group (5 months) [72]. A similar benefit over regorafenib 
(median OS 8.8 vs 6.3 months) was also confirmed in 
the CONCUR phase III clinical trial, in which only Asian 
patients were recruited [73]. Rash, fatigue, hand-foot skin 
response, anorexia and diarrhea are the most common 
adverse reactions in patients treated with regorafenib, 
and dose reductions are frequently required to manage 
regorafenib-related adverse events. A lower initial dose 
with a gradual dose increase has been proven in several 
trials to be an alternate, safe, and well-tolerated route to 
regorafenib administration, and this approach should 
be favored in daily practice [74,75].

RAS/RAF wild type and anti-EGFR therapies
The increased presence of the EGFR on cancerous 

tissue of the colon and rectum was detected about 35 
years ago [76]. Since then, great progress has been made 
in the understanding of its involvement in disease patho-
genesis, while two targeted biological agents have been 
approved and are widely employed in clinical practice. 

Cetuximab and panitumumab represent the only 
approved anti-EGFR targeted therapies for metastatic 
colorectal cancer, with equivalent efficacy [77]. They 
are monoclonal antibodies that either bind extracel-
lularly and downregulate EGFR and, subsequently, its 

tumor-promoting signaling or induce cancer cell death 
by mediating antibody-dependant cytotoxicity (ADCC) 
[78]. They also display a synergistic effect in combination 
with chemotherapy. In randomized controlled trials on 
the metastatic setting of colorectal cancer, cetuximab 
monotherapy increases overall and progression-free 
survival in chemotherapy pre-treated patients [79], while 
its addition to the pre-existing fluorouracil plus irinote-
can combination can be used as first-line to reduce 
progression risk [80]. Similarly, adding panitumumab to 
fluorouracil/leucovorin plus oxaliplatin results in longer 
progression-free survival [81].

Previous and ongoing research on other anti-EGFR 
strategies has yielded mixed results. EGFR tyrosine kinase 
inhibitors have been hypothesized to inhibit EGFR-regu-
lated pathways, as in the case of KRAS-wt Non-Small Cell 
Lung Cancer (NSCLC) [82]. Their success however was not 
repeated in early trials of gefitinib plus chemotherapy 
[83,84], while erlotinib has been proven more promising 
in increasing survival in KRAS-wt metastatic colorectal 
cancer [85], but these results were not consistent with 
those of other studies [86]. High toxicity was the com-
mon denominator among all studies [83–87].

EGFR itself is less important as a predictive marker 
of response and anti-EGFR therapies are indicated 
regardless of its degree of expression [88,89]. On the 
other hand, the absence of KRAS mutations, especially 
in exon 2, is a prerequisite for the administration of 
anti-EGFR targeted therapy, which is otherwise not 
only ineffective [90,91] but has been shown to ex-
pedite terminal outcomes [81]. This is attributed to 
bypassing EGFR signaling and activating the RAS/
RAF/MAPK signaling pathway, enabled by the mutant 
variants [78]. Similarly, human epidermal growth fac-
tor receptor 2 (HER2) amplification is associated with 
shorter progression-free survival [92], possibly due 
to the EGFR-independent downstream activation of 
PI3K/AKT/mTOR and RAS/RAF/MAPK cascade or by 
heterodimerization with EGFR [93].

Interestingly, the location of colon cancer is of prog-
nostic and predictive value. Based on data from the 
CRYSTAL [80] and FIRE-3 [94] randomized controlled trials, 
patients with left-sided RAS-wt metastatic colon cancer 
clearly benefit more from cetuximab plus chemotherapy 
in terms of response rates and survival than patients with 
right-sided tumors [95]. Right-sided tumors generally 
have a worse prognosis regardless of the interventions 
used [96] and display different histopathological and mo-
lecular characteristics compared to left-sided tumors [97],  
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including less robust EGFR signaling, that could explain 
the inefficiency of anti-EGFR strategies.

KRAS as a target
As we mentioned above, RAS is a protein family 

of 3 members KRAS (Kirsten rat sarcoma virus), NRAS 
(neuroblastoma RAS), and HRAS (HRas Proto-Oncogene, 
GTPase) that have GTPase function at the signal trans-
duction of most growth factor receptors such as the 
EGFR [98]. RAS activating mutations and especially KRAS 
mutations are the most common genetic alterations in 
human carcinomas, accounting for almost one million 
deaths every year worldwide. It is found in about 40% 
of CRCs and has an anatomic specificity to the more 
aggressive right-sided tumors as compared to left-sided 
ones that are more likely to have EFGR mutations [99]. 
Mutations mostly in codons 12, 13, 61 in the RAS gene 
result in different KRAS mutant alleles with the most 
common ones for CRC being G12D, G12V, G13D, G12A, 
G12S, and G12C. The majority of the above mutations 
are caused by a single amino acid substitution. 

Therapies targeting KRAS would be very effective 
for colorectal malignancies but unfortunately creat-
ing such an inhibitor is rather difficult and none has 
yet been approved. For now, the only drugs inhibiting 
KRAS directly are sotorasib (AMG510) and adagrasib 
(MRTX849). They bind to the P2 pocket of the switch I/II 
region of KRAS and lock it in its inactive form. Sotorasib is 
only approved for patients with advanced or metastatic 
NSCLC positive to the KRAS G12C mutation that have 
been previously treated with at least one other therapy 
[100]. Currently, multiple clinical trials in phases I and II 
examine the use of sotorasib in CRC as well. Specifically, 
the CodeBreak100 trial [101] ended up to the conclusion 
that by using sotorasib, malignancies can be controlled, 
and patients may benefit with up to 5.4 months of stable 
disease duration. The Krystal-1 trial [102] concluded that 
Adagrasib can also have therapeutic effects on patients 
with CRC, especially when combined with anti-EGFR 
treatments. Another compound that is being studied 
is BI-2852 that also binds at the same region of KRAS 
G12C mutation making it unable to bind with SOS1 
and its effectors PI3K and RAF at different doses. Both 
MAPK and PI3K/AKT pathways were blocked producing 
antiproliferative effects in mutant cells. These studies 
confirmed that KRAS can be targeted directly and re-
search in that direction should continue.

A recent study came up with a SOS1 (Son of Seven-
less) inhibitor (BI-3406) [103] that blocks the binding of 

SOS1 to RAS when KRAS alleles G12 (especially G12D, 
G12V, and G12C) and G13D as well are present. As a 
result, RAS cannot be activated leading to the block-
age of cell proliferation. The combination of BI-3406 
with a MEKI also known as MAPKI (Mitogen-activated 
protein kinase inhibitor) I- trametinib was also tested. 
The discovery of this compound and other analogs like 
BI 1701963 (phase I clinical trial NCT04111458) show a 
very promising therapeutic potential.

B Raf Kinase (BRAF) as a target 
BRAF protein is a member of a serine-threonine 

kinase family. RAF kinases act mainly through phos-
phorylation and play an important role in many cellular 
processes, such as cell proliferation, differentiation and 
regulation of transcription. The proto-oncogene BRAF, 
which encodes the corresponding serine-threonine 
protein kinase, plays a critical role in the carcinogenesis 
not only of colorectal cancer, where it is mutated in 5% 
-8% of cases, but also in many other forms of the disease 
[104]. In particular, mutations in the gene can either be 
inherited or appear later in life and cause cancer [105]. 
Gene mutations show great diversity and many have 
been detected in large numbers (over 30) [106]. These 
can explain the development and progression of many 
malignancies. Typical examples are melanoma, NSCLC,  
colon cancer, papillary thyroid carcinoma, glioblastoma 
and astrocytoma [104,107,108].

Mutations may occur in different regions of the gene 
sequence. However, the most commonly identified 
mutations in colorectal cancer (and other malignan-
cies) involve the replacement of thymine by adenine at 
nucleotide 1799, leading to the replacement of valine 
(V) by glutamate (E) at code 600 [108]. This mutation 
typically affects women, older people, smokers and 
more often right colon cancers [106,109]. Obviously, this 
mutation can play a crucial role in patients’ prognosis 
and response to treatment. This is because it usually 
involves low-grade, advanced cancers that have already 
had lymph node metastases and perineural infiltration 
[109]. In addition, this mutation is associated in some 
studies with poor prognosis and may adversely affect 
patients with hepatic and pulmonary metastasectomy 
[107,110,111]. It is also negatively associated with the 
response to anti-EGFR agents [109]. Other mutations 
which have been found are G463E, G463V, G465A, 
G465E, G465V, G468A, D593V, F594L, etc. [112].

Before the era of BRAF targeting, intensive chemo-
therapy combined with anti-VEGF therapies was the 
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most appropriate approach for patients with BRAF-V600E 
[113]. However, during recent years, numerous of stud-
ies, which have evaluated different BRAF inhibitors as 
well as different combinations, have provided adequate 
evidence regarding the clinical significance of BRAF 
blockade in colorectal cancer. It is well documented 
that monotherapy with a BRAF-V600E inhibitor doesn’t 
improve significantly response rates as well as that only 
simultaneously targeting at multiple steps provides 
clinically significant results. So, different combinations of 
BRAF inhibitors with anti-EGFR monoclonal antibodies 
and/or MEK inhibitors seem to have achieved the most 
promising results. Briefly, according to the BEACON trial, 
the combination of encorafenib (BRAF inhibitor) and 
cetuximab with or without binimetinib (a MEK inhibitor) 
in pre-treated patients with metastatic CRC improved 
clinical outcomes with a tolerable toxicity [114]. In ad-
dition, the use of vemurafenib (another BRAF inhibitor) 
together with cetuximab and irinotecan in patients with 
metastatic CRC has also showed positive results in terms 
of response to treatment and progression-free survival 
[115]. Furthermore, G. Middleton et al. have reported that 
the dabrafenib-trametinib-panitumumab combination 
produces a relatively satisfactory response in patients 
with BM1 gene expression profile, which represents 
30% of all BRAF-V600E mutant CRC. These patients are 
characterized by increased potential for metastasis, 
activation of KRAS/AKT (AKT Serine/Threonine Kinase) 
signaling, stronger immune response and resistance 
to chemotherapy. On the other hand, in patients with 
BM2 disease (V600E mutation, deregulation of cell cycle 
control points, enrichment in metabolic processes), it 
was less beneficial [116]. Many other combinations have 
been studied or are under investigation, while other 
open questions are the best sequence strategy as well 
as the significance of the combination of target therapy 
with immunotherapy [113]. 

Microsatellite instability-high (MSI-H) tumors 
The DNA replication mechanism is well conserved 

and maintained mainly due to the DNA polymerase’s 
activity. However, the enzyme cannot always detect 
and repair its errors. In such a case, the MMR (mismatch 
repair) mechanism, among others, plays a crucial role 
[117]. Throughout the human genome, there are many 
short repetitive loci of DNA, called STRs (short tandem 
repeats) or microsatellites, which consist of one to six 
nucleotide repeats [118]. The term MSI refers to the 
presence of altered microsatellites’ length (either longer 

or shorter) due to a defective MMR mechanism caused 
by mutations or epigenetic changes in one of its funda-
mental genes such as MSH2 (MutS Homolog 2), MSH6 
(MutS Homolog 6), MLH1 (MutL Homolog 1), PMS1 (PMS1 
protein homolog 1) and PMS2 (PMS2 protein homolog 
2) [119]. In 1997, the American National Cancer Institute 
(NCΙ) suggested the classification of MSI status based on 
the number of detected mutated loci. More specifically, 
five significant loci used as biomarkers (BAT 25, BAT 26, 
D2S123, D5S346, and D17S250) are being examined and 
tumor status is classified as follows: MSI-H (Microsatellite 
Instability High) in the presence of two or more muta-
tions detected, MSI-L (MSI low) when there is one and 
MSS (Microsatellite stable) when there is none [120]. 

MSI is considered as a hallmark of Lynch Syndrome 
(LS). Approximately 90% of LS cases are characterized 
by germline mutations of MMR genes, inherited in an 
autosomal dominant manner. LS predisposes to carcino-
genesis at a younger age (before 50 years old) mainly of 
the colon, stomach and endometrium [121]. Screening 
of LS includes testing for MSI based on the Amsterdam 
Criteria [122] or the Bethesda Guidelines [123]. However, 
it is known that MSI does not take place early during 
tumorigenesis and only half of the colon adenomas 
examined will test positive [124], being indicative for LS 
since it is a rare finding in sporadic CRC. MSI is relatively 
frequent in sporadic CRC since 15% of the cases show 
deficient MMR (dMMR) mechanism. Hypermethylation 
of the MLH1 promoter constitutes the most common 
cause of dMMR sporadic CRC. This epigenetic alteration 
is often combined with BRAF V600E mutation but only 
in MSI-H sporadic CRC. Hence, when such a situation 
is identified, it contributes to the differential diagnosis 
between sporadic CRC and LS [125].

The MSI-H phenotype appears to have distinctive 
clinicopathological and histological features compared 
to MSI-L and MSS. These tumors mostly arise in the 
proximal colon (right-sided location) and are charac-
terized by poor differentiation, high tumor infiltrating 
lymphocytes (TILs) counts and mucinous cell type [126]. 
An early-stage diagnosed MSI-H CRC has a favorable 
prognosis in comparison with MSS or MSI-L. Prominent 
lymphocytic infiltration of an MSI-H tumor suggests a 
high antitumor immune response leading to apoptosis, 
a result that probably explains the improved prognosis 
[127]. Nowadays, the MSI status of a CRC contributes 
to a more individualized selection of therapy. Ribic 
et al. concluded that MSI-H CRC do not benefit from 
fluorouracil-based adjuvant chemotherapy [128]. 
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Immunotherapy in microsatellite instability-high 
(MSI-H) patients

The three primary treatment methods of metastatic 
colorectal cancer (mCRC), surgery, chemotherapy and 
radiotherapy remain the standard of care but their 
benefits have already reached a plateau. Therefore, it is 
urgent to develop a new effective therapeutic strategy 
to improve the survival outcome of cancer patients. 
At present, immunotherapy and targeted therapy are 
promising treatment strategies for CRC, since they have 
the potential to provide improved therapeutic efficacy 
with limited toxicity. Following the successful results of 
immunotherapy in other types of cancer, the interest 
in its use in CRC is highly increased and continuously 
growing [129].The way immunotherapy fights cancer 
is by stimulating the immune system against tumors. 
There are several categories of immunotherapy for many 
cancer types: adoptive cell therapy, cancer vaccines, on-
colytic virus therapy, targeted antibodies, immunomod-
ulators, etc. To date, immunomodulators have already 
been approved by the Food and Drug Administration 
(FDA) for the treatment of patients with dMMR/MSI-H 
mCRC and seem to be the most promising solution. One 
of the main representatives of immunomodulators are 
immune checkpoint inhibitors (ICIs) which regulate the 
interaction between T cells, antigen-presenting cells 
(APCs), and tumor cells to boost the release of sup-
pressed immune responses. ICIs target co-inhibitory 
receptors, such as programmed cell death protein 1 
(PD-1) and cytotoxic T-lymphocyte-associated antigen 
4 (CTLA-4) expressed on T-cells and other immune-cell 
subpopulations, or their ligands, such as programmed 
cell death protein 1 ligand 1 (PD-L1) expressed on 
tumor cells and various immune cells [130]. The very 
high mutation rate in dMMR/MSI-H mCRC leads to the 
production and accumulation of hundreds of somatic 
mutations which results in a highly effective neoantigen 
presentation that attracts T-effector cells, such as CD8+ 
TILs, T helper 1 (Th1) CD4+ TILs and macrophages, as well 
as immunosuppressive cells such as myeloid-derived 
suppressor cells (MDSCs) and T-regulatory (Tregs) cells. 
In addition, these tumor cells exhibit upregulation of 
several immune checkpoint regulators such as PD-1, 
PD-L1, CTLA-4, Lymphocyte activation gene 3 (LAG3). 
That explains the high response rates and high sensi-
tivity observed in dMMR/MSI-H mCRC patients treated 
with ICIs [131]. 

Τwo early phase II studies, KEYNOTE-016 and 164 
evaluated single-agent pembrolizumab (anti-PD1) in 

previously treated dMMR/MSI-H mCRC. Patients in KEY-
NOTE-164 were divided into two cohorts, ≥2 (cohort A) 
or ≥ 1 (cohort B) prior lines of therapy (fluoropyrimidine, 
oxaliplatin, irinotecan, or anti-VEGF/EGFR). Pembro-
lizumab, at a flat dose of 200 mg every 3 weeks, was 
administered with a disease control rate (DCR) of 51% 
and 57% for cohorts A and B, respectively. The immune-
related objective response rate (ORR) was 33% (N=124) 
[132]. On the other hand, in KEYNOTE-016 patients were 
divided into three separate cohorts: dMMR/MSI-H CRCs, 
pMMR/MSI-L CRCs, and dMMR/MSI-H non-CRCs, they 
were administered with a 10 mg/kg dose of pembroli-
zumab every 14 days. This study highlighted the different 
activity of pembrolizumab in CRC based on MMR status; 
the PFS at 20 weeks was 78% in dMMR/MSI-H CRC vs 
11% in pMMR/MSI-H CRC and the ORR was 40% and 0%, 
respectively. An interesting point of this research was 
that the number of somatic mutations was significantly 
correlated with the chance of achieving response to 
therapy [133,134]. Pembrolizumab showed significant 
efficacy in the refractory setting following chemotherapy 
in patients with dMMR/MSI-H mCRC and was approved 
by the U.S. FDA for this indication, in 2017.

KEYNOTE-177 is a phase III, open-label trial, whose 
results led to the approval of pembrolizumab as mono-
therapy for the frontline treatment of patients with 
unresectable or metastatic, dMMR or MSI-H CRC. In this 
study, investigators compared the efficacy of first-line 
pembrolizumab monotherapy (N=153) vs standard 
of care chemotherapy ± bevacizumab or cetuximab 
(N=154) in 307 patients affected by dMMR/MSI-H mCRC. 
Pembrolizumab was superior to standard chemotherapy 
in terms of PFS (median 16.5 months vs 8.2 months, 
hazard ratio 0.60, 95% CI, 0.45-0.80, p = 0.0002) with 
a lower rate of treatment‐related adverse events (AEs) 
(G3‐5 AEs 22% versus 66%). Also, the ORR was 43,8% vs 
33,1% for pembrolizumab and chemotherapy, respec-
tively [135,136].

Immune checkpoints have been found to be over-
expressed in dMMR/MSI CRCs compared to pMMR/
MSS CRCs [137]. Then, combinations of monoclonal 
antibodies should be a solution to avoid primary resist-
ance of dMMR/MSI-H mCRC to pembrolizumab. The 
FDA also approved nivolumab (anti-PD1) either alone 
or in combination with low dose ipilimumab (anti-
CTLA4), for patients with dMMR/MSI-H mCRC, based on 
the results of the CheckMate 142 study. In this study, 
the researchers assessed the efficacy of nivolumab as 
first-line monotherapy (N=74) in comparison with the 
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combination of nivolumab with ipilimumab (N=119) and 
demonstrated very promising results, ORR 23% vs 55%, 
DCR 69% vs 80% and G3-4 AE rates 21% vs 32%, respec-
tively [138,139]. Several ongoing clinical trials investigate 
the impact of the combination of immunotherapy and 
chemotherapy in dMMR/MSI-H mCRC patients, such 
as the COMMIT study which has 3 treatment arms, 
atezolizumab (anti-PD-L1) monotherapy vs FOLFOX + 
bevacizumab (anti-VEGF) vs atezolizumab + FOLFOX 
+ bevacizumab [140]. Similarly, CheckMate 8HW is an 
ongoing study of nivolumab with or without ipilimumab 
or investigator’s choice chemotherapy in dMMR/MSI-H 
mCRC patients [141]. Moreover, avelumab (anti-PD-L1) 
is investigated as an option in the second-line setting. In 
the SAMCO study avelumab is compared with standard 
of care in dMMR/MSI-H mCRC patients [142].

At present, many clinical trials investigate the efficacy 
of ICIs in combination with targeted therapies such 
as anti-VEGF drugs, anti-EGFR drugs, MAPK pathway 
inhibitors and multitarget kinase inhibitors. Moreover, 
the modulation of gut microbiota or fecal microbiota 
transplant seem to be promising options for boost-
ing immunotherapy, in patients with dMMR/MSI-H 
mCRC with secondary resistance to ICIs (NCT03775850) 
[143]. Moreover, vaccination with frameshift peptides 
is one more option as a strategy to exaggerate pri-
mary or secondary resistance to ICIs in these patients 
(NCT04041310) [144–146].

Human epidermal growth factor receptor 2 (HER2) 
as a target 

HER2 amplification occurs in 5% of mCRC patients 
[147]. The clinical significance of HER2 regarding its 
prognostic value in CRC needs further clarification. 
Early studies proposed a negative prognostic impact 
of HER2 overexpression, but more recent trials didn’t 
confirmed the association between HER2 amplification 
and outcome [148,149].

According to the PETACC3 adjuvant chemotherapy 
trial and the subsequent DNA copy number & gene 
expression analysis, proximal carcinomas (ascending, 
hepatic flexure, transverse colon) were less likely to be 
HER2 or EGFR amplified compared to distal carcinomas 
(splenic flexure, descending colon, rectum) [97]. HER2 
amplification in mCRC is enriched in KRAS, NRAS, BRAF 
and PIK3CA WT tumors and is a resistance marker for 
EGFR antibody therapy [150]. HER2 positive patients 
show more frequently lung metastases and higher tumor 
burden as well as HER2 positive tumors were more likely 
to be left sided [151]. Furthermore, HER2 status is also a 
molecular predictive biomarker for anti-HER2 targeted 
therapies (Trastuzumab/pertuzumab or Trastuzumab/
lapatinib) [152]. 

The clinical significance of HER2 amplification re-
garding HER2-targeted therapies in patients with mCRC 
has been confirmed in many clinical trials (Figure 1). 
TRIUMPH was a phase II trial, in which circulating tumor 

Figure 1. Clinical trials in which anti-HER2 treatments have been evaluated. 
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DNA (ctDNA) and simultaneously tissue HER2 testing 
were used [153]. The aim was to recognize patients for 
dual-HER2 blockade treatment with pertuzumab plus 
trastuzumab in patients with HER2 amplification and 
RAS wild-type. The outcomes of this investigation with 
pertuzumab / trastuzumab as a treatment in patients 
with chemorefractory RAS-WT disease (n=18) are ORR 
35% (tissue positive), 33% (ctDNA-positive) and median 
progression free survival (mPFS) at 4 months. Findings 
from the TRIUMPH study confirmed the usefulness of 
ctDNA as a screening platform to select patients with 
HER2-amplified mCRC who will benefit from dual-HER2 
blockade with trastuzumab and pertuzumab. The draw-
backs of TRIUMPH are the small sample size and the use 
of a registry control arm [153]. 

In HERACLES-A trial, fluorescence in situ hybridization 
(FISH) and immunohistochemistry (IHC) were used. In 
this study, the above diagnostic algorithms were utilized 
to screen HER2-positive tumors for therapeutic target-
ing. More specifically, few patients had histologically 
confirmed KRAS-WT exon 2 (codons 12 and 13) and 
HER2-positive mCRC. Dual HER2 blockade with the 
combination of trastuzumab and oral lapatinib until 
disease progression or toxicity were investigated. The 
outcomes were ORR 28%, mPFS at 4.7 months in patients 
with increased gene copy number (GCN) > 9.5 and 3.7 
months in patients with HER2 GCN <9.5 with median OS 
10.0 months. The long-term (6.7 years) follow-up analysis 
of HERACLES-A provides strong evidence that the ad-
ministration of trastuzumab and lapatinib combination 
in KRAS wild-type, chemorefractory HER2-positive mCRC 
patients provide survival as well as clinical benefits [154].

Another significant study was HERACLES-B study, 
which evaluated a targeted approach with a combina-
tion of pertuzumab and trastuzumab-emstasine (T-DM1) 
[155]. It was a single-arm, phase II trial in which patients 
with RAS/BRAF wild-type (n=31), HER2-amplified mCRC 
and refractory to standard treatments (chemorefrac-
tory) were enrolled. Diagnostic algorithms similar to 
that of HERACLES A were also used. At data cut-off, the 
ORR was 9.7%, the mPFS was 4.1 months and disease 
control rate 77.4%. Although, HERACLES-B trial did not 
reach its primary end point of ORR, low toxicity as well 
as high disease control rate support its therapeutic 
potential [155].

In addition, in MyPathway trial, which is a multiple 
basket, open-label, phase IIA study, pertuzumab in 
combination with trastuzumab was assessed in patients 
with HER2-amplified chemorefractory mCRC. ORR was 

32%, mPFS 2.9 months and mOS 11.5 months. This trial 
confirmed the crucial role of HER2-targeted treatment 
with pertuzumab/trastuzumab and a chemotherapy-
free regimen in patients with HER2-positive mCRC as 
well as the importance of molecular testing in colorectal 
cancer [156]. 

Two other studies also confirmed the role of anti-
HER2 targeting in the management of mCRC. Firstly, 
MOUNTAINEER was a phase II trial in which tucatinib 
and trastuzumab was studied in patients with chem-
orefractory RAS-WT disease. Interim analysis showed 
a ORR 52.2%, mPFS 8.1 months and mOS 18.7 months 
[157]. In addition, DESTINY-CRC01 was a phase II trial in 
which the safety and antitumour activity of trastuzumab 
deruxtecan was investigated [158]. Patients with RAS 
and BRAF wild-type tumors and disease progression on 
two or more prior regimens (n=78) were enrolled into 
three cohorts according to the HER2 expression level 
(A, B, C classification with the assistance of IHC, ISH). The 
ORR in cohort A was 45.3%, (43.8% in patients who had 
previously received HER2-targeted therapy), DCR was 
83%, mPFS 6.9 months while mOS wasn’t reached. In 
addition, no responses were observed in cohorts B and 
C. This study showed that trastuzumab deruxtecan has a 
durable activity in HER2-positive mCRC refractory com-
pared to standard treatments with a safe profile [158].

ΝΤRΚ fusions in metastatic colorectal cancer
It is known that NTRK1, NTRK2 and NTRK3 genes en-

code the family of tropomyosin receptor kinases (TRK) 
TRKA, TRKB, TRKC, which are important for the neural 
system’s normal development. When a nerve growth 
factor (NGF) is attached to a TRK protein, then the lat-
ter gets dimerized, phosphorylated and it activates 
the PI3K, RAS/MAPK/ERK and PLC-gamma signaling 
cascades. Alterations of the NTRK genes have been 
detected in many types of adult and children’s solid 
tumors. Some examples of malignancies, in which NTRK 
gene rearrangements have been identified are thyroid 
[159], gliomas [160], lung [161] and colon [162] tumors.

Although the prevalence of NTRK gene alteration 
in colorectal cancer is below 1% - actually it is esti-
mated that the incidence is between 0.23-0.97%- it is 
really important to identify these patients [163]. The 
detection of NTRK gene fusions can be identified by 
Next Generation Sequencing (NGS) with the use of 
RNA or DNA samples of the patient or by FISH. In 1986 
the “TPM3-TRK” oncogene was found in a patient with 
colorectal cancer as a result of an intrachromosomal 
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rearrangement at 1q22-23. That leads to the fusion of 
the tropomyosin 3 gene (TPM3) with a sequence that 
encodes both transmembrane and intracellular parts 
of TRK receptor [164].

Larotrectinib was the first TRK inhibitor approved by 
FDA in November 2018 in the USA.  Alexander Drilon 
and his team demonstrated through their clinical trial 
that Larotrectinib is efficient in adult and pediatric solid 
malignancies with NTRK fusions. In this clinical trial, 55 
patients with NTRK positive tumors were treated with 
Larotrectinib, which is an orally administered small 
molecule that shows high affinity to the TRK receptor, 
without affecting other types of kinases. The ORR in 
this trial was 80% according to investigator’s assess-
ment and 75% according to central assessment. 13% 
of the patients had complete response (CR), while 62% 
showed partial response (PR). There were 4 patients 
with metastatic colorectal cancer and three of them 
responded to the treatment: two showed partial re-
sponse and the other’s disease remained stable. The 
median period of response was estimated to be 1.8 
months. However, there were patients with primary 
resistance to Larotrectinib, as well as patients who had 
progressive disease and, as a result, new mutations 
that produced Larotrectinib resistance appeared. More 
specifically, these mutations were in the front position 
(NTRK1 G595R or NTRK3 G623R;), gatekeeper position 
(NTRK1 F589L;) and the xDFG position (NTRK1 G667S 
or NTRK3 G696A;) [165].

Entrectinib is also a 1st generation TRK inhibitor, 
orally administered, but unlike Larotrectinib that targets 
exclusively the TRK receptor, it is a pan-kinase inhibitor. 
That means that it also targets ALK and ROS1 proteins 
[166]. According to clinical trials, Entrectinib was proven 
to be well tolerated, while it caused clinically important 
response in patients with solid tumors characterized 
by NTRK positive fusion. Entrectinib showed efficacy 
in patients independently of whether they had central 
nervous system metastasis or not. Blinded Independent 
Central Review (BICR) showed 57.4% ORR and at the 
same time, 7.4% was CR. The median period of response 
was estimated to be 10.4 months [167].

Loxo-195 and Repotrectinb constitute the 2nd genera-
tion of TRK inhibitors and they were designed to target 
these mutations that are resistant to Larotrectinib and 
Entrectinib. Loxo-195 is selective to all three TRK kinases, 
their alterations and the acquired resistance mutations 
not only at preclinical level, but also in patients. A promis-
ing new therapy for patients with NTRK mutation starts 

with larotrectinib and is followed by LOXO-195 after the 
acquired resistance mutations appear. The target is to 
prolong the time period, during which the disease is 
under control [168]. 

CONCLUSIONS
During recent years, there is a plateau regarding the 

advances in the treatment of metastatic CRC compared 
to the advances in other solid tumors. Obviously, a better 
understanding of the underlying molecular mechanisms 
will lead to better characterization and exploitation of 
emerging new targets thus improving the management 
and treatment of CRC.
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